Boosting productivity using GenAl & NLP

Romy van Drie | TNO

Content

- Evolution of NLP
- NLP work in Norm Engineering
 - Extracting components of FLINT frames
 - Interacting with FLINT frames

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

Basis of NLP

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

2013: word2vec (Mikolov et al.)

Provided high quality word embeddings

Basis of NLP

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

2013: word2vec (Mikolov et al.)

Provided high quality word embeddings

2018: BERT

(Devlin et al.)

Provided a pretrained model that could be finetuned for a wide variety of downstream NLP tasks (e.g. sentiment analysis)

Basis of NLP

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

2013: word2vec (Mikolov et al.)

Provided high quality word embeddings

2018: BERT

(Devlin et al.)

Provided a pretrained model that could be finetuned for a wide variety of downstream NLP tasks (e.g. sentiment analysis)

2020: GPT-3

(Brown et al.)

Provided generative capabilities

Can perform tasks with minimal or no task-specific training

Basis of NLP

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

2013: word2vec (Mikolov et al.)

Provided high quality word embeddings

2018: BERT

(Devlin et al.)

Provided a pretrained model that could be finetuned for a wide variety of downstream NLP tasks (e.g. sentiment analysis)

2020: GPT-3

(Brown et al.)

Provided generative capabilities

Can perform tasks with minimal or no task-specific training

2022: ChatGPT

Made GenAI accessible to the general public

Basis of NLP

Distributional hypothesis:

Words that occur in the same contexts tend to have similar meanings (Harris, 1954)

2013: word2vec (Mikolov et al.)

Provided high quality word embeddings

2018: BERT

(Devlin et al.)

Provided a pretrained model that could be finetuned for a wide variety of downstream NLP tasks (e.g. sentiment analysis)

2020: GPT-3

(Brown et al.)

Provided generative capabilities

Can perform tasks with minimal or no task-specific training

2022: ChatGPT

Made GenAI accessible to the general public

What does this mean for Norm Engineering?

Tasks that were previously 'impossible' now become possible!

How can we use NLP for Norm Engineering?

Creating FLINT frames

Semantic Role Labeling (SRL)

Goal: automatically extract components of a FLINT frame from law texts

Methods: rule-based BERT-based GPT-based

Precondition extraction

Goal: automatically extract preconditions of a FLINT frame from law texts

Methods: GPT-based Interacting with FLINT frames

Question & Answer (Q&A)

Goal: answer questions (from civilians) with reference to the original source

Methods: GPT-based hybrid AI NE task

NLP task

How can we use Semantic Role Labeling for NE?

Act frame

	Component	Example
The initiator of some action, capable of The ting it with weight the effect of the action The entity for whom the action was performed	Action	process
	Actor	processor
	Object	personal data
	Recipient	data subject
	Precondition	
	Postcondition	
	Source text	Personal data shall be processed lawfully, fairly and in a transparent manner in relation to the data subject
	Source	Art. 5 (1) GDPR

Method and results

Method

- Rule-based (Bakker et al., 2022a)
- BERT-based (van Drie et al., 2023; Bakker et al. 2022b)
- GPT-based (paper under review)

Results

	Rule	BERT(je)	GPT-3.5 Turbo
English	0.528	0.879	0.627
Dutch	0.587	0.842	0.644

Fig. 1: accuracy

(out of all predictions, how many were correct?)

Conclusion

- BERT-based method still outperformed GPT-based method at time of testing
- However, BERT-based method needs considerable training data
 - English dataset: ~1500 labeled sentences
 - Dutch dataset: ~4500 labeled sentences
- It is likely that the GPT-based method will continue to improve as the GPT models improve

How can we use NLP for Norm Engineering?

Creating FLINT frames

Semantic Role Labeling (SRL)

Goal: automatically extract components of a FLINT frame from law texts

Methods: rule-based BERT-based GPT-based

Precondition extraction

Goal: automatically extract preconditions of a FLINT frame from law texts

Methods: GPT-based Interacting with FLINT frames

Question & Answer (Q&A)

Goal: answer questions (from civilians) with reference to the original source

Methods: GPT-based hybrid AI NE task

NLP task

How can we use Precondition Extraction for NE?

Act frame

Specific requirements, criteria, or circumstances that must be fulfilled before a specific action can occur

Component	Example
Action	terminate
Actor	the court
Object	guardianship
Recipient	-
Precondition	the guardian abuses authority or lacks required consent
Postcondition	
Source text (simplified)	The court can terminate guardianship if the guardian abuses authority or lacks required consent
Source	Book 1 Dutch Civil Code, Article 327

Method and results

(Redelaar, van Drie, Verberne & de Boer, 2024)

Method

- Creation of dataset (102 legal QA pairs with source)
 - Question: "When can the Dutch court terminate the guardianship of a natural person?"
 - Answer: "The court can terminate guardianship if the guardian abuses authority or lacks required consent"
 - Source: "Book 1 Dutch Civil Code, Article 327"
- Implementation of LLM pipeline (RAG)
- Implementation of evaluation metrics (e.g. fluency, correctness, citation quality)

Conclusion

- It is possible to generate fluent and correct answers, with moderately reliable citation (83%)
- Extra work is needed to connect the QA-system to give suggestions for FLINT frames

How can we use NLP for Norm Engineering?

Creating FLINT frames

Semantic Role Labeling (SRL)

Goal: automatically extract components of a FLINT frame from law texts

Methods: rule-based BERT-based GPT-based

Precondition extraction

Goal: automatically extract preconditions of a FLINT frame from law texts

Methods: GPT-based Interacting with FLINT frames

Question & Answer (Q&A)

Goal: answer questions (from civilians) with reference to the original source

Methods: GPT-based hybrid AI NE task

NLP task

How can people interact with FLINT?

- Representation in FLINT can quickly become quite large, especially in complex situations
- Can we think of additional ways to interact with FLINT to improve user friendliness?

Figure 2. Representation in FLINT of the regulations for lending and returning books. Blue rectangles are instances of *AtomicFact*, green rounded rectangles are instances of *Act*, yellow hexagons are instances of *Duty*. Actions are omitted for readability.

Breteler et al. (2023)

Dataset

Requirements

- Questions must be simple (non-expert)
- Answers must have a source (law and FLINT frame)

Can you help us find 'real' and relevant questions from nonexperts?

Get in touch!

Questions - based on Aliens Act (Vreemdelingenwet) and Participation Act (Participatiewet)

- What is the maximum amount of equity I may have to qualify for a social assistance benefit (bijstand)?
- When should I apply for a return visa?
- My application for a residence permit has not been approved, what can I do now?

Method

Thanks!

Get in touch with the Norm Engineering NLP team

Maaike de Boer maaike.deboer@tno.nl

Roos Bakker roos.bakker@tno.nl

Romy van Drie romy.vandrie@tno.nl

Daan Di Scala daan.discala@tno.nl

References

Bakker, R. M., M. H. T. de Boer, R. A. N. van Drie, and D. Vos (2022a). Extracting Structured Knowledge from Dutch Legal Texts: A Rule-based Approach. https://ceur-ws.org/Vol-3256/km4law1.pdf.

Bakker, R. M., R. A. N. van Drie, M. H. T. de Boer, R. van Doesburg, and T. M.van Engers (2022b). Semantic Role Labelling for Dutch Law Texts. https://aclanthology.org/2022.lrec-1.47.

Drie, R. A. N. van, M. H. T. de Boer, R. M. Bakker, I. Tolios, and D. Vos (2023). The Dutch Law as a Semantic Role Labeling Dataset. https://doi.org/10.1145/3594536.3595124.

Redelaar, F., R. Van Drie, S. Verberne, and M. De Boer (2024). Attributed Question Answering for Preconditions in the Dutch Law. https://aclanthology.org/2024.nllp-1.12.

Breteler, J., van Gessel, T., Biagioni, G., & van Doesburg, R. (2023). The FLINT Ontology: An Actor-Based Model of Legal Relations. In Knowledge Graphs: Semantics, Machine Learning, and Languages (pp. 227-234). IOS Press.

Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781, 3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805v2

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

